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Abstract

A great variety of numerical methods have been employed to solve the
Schroedinger equation, the basic equation of theoretical atomic physics.
Being a three body problem, the scattering of an incoming antiproton (p -) by
a hydrogen atom (H, consisting of an electron, e -, bound to a proton, p) is
one of the simplest problems in field of atomic theory that requires a numer-
ical solution. Described and compared here are three methods, valid in
essentially separate energy ranges from zero energy through MeV energies,
that illustrate how numerical methods are employed in this field. In spite of
this problem’s seeming simplicity, much effort is required in terms of mathe-
matical manipulation and use of approximations to render it capable of
numerical solution.

1. Introduction

In quantum mechanics, as in classical mechanics, exact analytic solutions are yet
to be found for real systems consisting of three or more bodies. Thus, in the field of the-
oretical atomic physics, where one must solve the Schroedinger equation to obtain quan-
tum solutions for systems of particles, approximate methods are required, and these
nearly always require some form of numerical solution.

The system consisting of three particles, a proton (p, with unit positive charge), an
antiproton (p-, unit negative charge), and an electron (e-, unit negative charge) is one of
the simplest systems for which the exact, analytic solutions of their quantum mechanical
motion are presently unknown. Hence the need for a numerical solution to the particular
problem considered here, the scattering of an incident p- by a stationary hydrogen atom
(designated H, consisting of an e- bound in the ground state to a p). Calculational meth-
ods for solving this problem vary considerably, depending in part on what physical pro-
cesses are possible for the given incident energy of the p- on the stationary H.

At all energies a possible outcome of the scattering is that the p- is deflected with
no permanent effect on the H (elastic scattering). At incident energies around and above
about 40 electron volts (eV), other processes are possible in which the hydrogen atom



becomes excited (higher energy bound state) or ionized (e- unbound to p). In these pro-
cesses (forms of inelastic scattering) the p- transfers part of its energy to the e-. At lower
energies, these inelastic processes rapidly decrease in probability of occurrence and
then cease (at specific energies) when the p- energy is insufficient to cause direct ioniza-
tion or a particular level of excitation. However, for energies around and below 27.2 eV,
another process is possible in which the p- is captured into a bound state with the p,
forming protonium. The electron then departs since it cannot be bound to protonium, so
this is another form of ionization. In this latter process the e- can absorb very little energy
beyond the minimum required for ionization. That energy is 13.6 eV, so when the inci-
dent p- energy is increasing in the vicinity of 27.2 eV, which corresponds to 13.6 eV when
viewed in the center-of-mass frame of the particles, the probability of protonium forma-
tion and the accompanying indirect ionization drops rapidly to zero.

The choice of calculational method also depends on properties of the solution that
can be foreseen without obtaining a full, accurate solution. As explained later, this sug-
gests, at all but the lowest energies, treatment of the p- as a classical particle interacting
with the quantum mechanical H. Hence the designation, semiclassical approximation,
which can be shown to have at least a significant level of validity for all energies around
and above about 10-4 eV. Concurrently, it may be shown for energies in this same range
that the p- portion of the solution involves many waves of quantized angular momentum.
Thus in this range, fully quantum methods that involve expansions in basis sets of p-

wave functions lead to a prohibitively large number of coupled differential equations for
current numerical capabilities.

Described here are the equations that must be solved and three particular meth-
ods of solution that span the energy range of the incident p- form zero 1 MeV.

2. Equations to Solve

The ordinary Schroedinger equation determines the non-relativistic quantum
mechanical motion of the three particles. Non-relativistic motion is present here because
the mean speeds of the three particles is well below the speed of light. The Schro-
edinger equation for the system of the three particles is (using atomic units in which the
unit of mass is the mass of the electron, of distance one Bohr radius, of charge the pro-
ton charge, and of angular momentum Plank’s constant over 2π)

-i ∂Ψ/∂t = HΨ (1)

for the time dependent form and

Hψ = Eψ (2)

for the time independent form, where t is the time, H the Hamiltonian operator, E the total
energy of the particles, and Ψ and ψ are the wave functions to be solved for. Ψ and ψ
are both functions of the spatial coordinates of the particles, and Ψ is additionally a func-
tion of time.  H is given by



H = K + V , (3)

where K is the kinetic energy operator and V is the potential energy. Here, after the cen-
ter of mass motion has been separated out (and employing atomic units),  K is given by

K = - (1/2µe)∇r
2 - (1/µp)∇R

2 - (1/µp)∇r·∇R , (4)

where µe = mp/(me+mp) and µp =mp /me, with me being the mass of the e- and mp the
common mass of the p and p-. The ∇’s are gradient operators or, when squared, Lapla-
cians. Their subscripts denote to which coordinate set they refer, with r denoting the
coordinates of the e- relative to the p and R the coordinates of the p- relative to the p.
Here,  V is given by

V = -1/r - 1/R + 1/ρ , (5)

where r is the distance between the p and e-, R is the distance between the p and p-, and
ρ is the distance between the e- and p-. Some other choices of coordinates lead to only
the Laplacians appearing in K, but the choice shown here, which includes the gradient
product, is more convenient for expressing initial and final conditions in Eq. (1) and
boundary conditions in Eq. (2).

Eq. (1) determines Ψ uniquely at all times if its form is known for one particular
time. Likewise Eq. (2) determines ψ uniquely for a given E and a given set of boundary
conditions. Eq. (1) and Eq. (2) are closely related in that Eq. (1) may be easily solved by
expanding Ψ in the form Ψ = Σj exp[-iEjt]ψj, where ψj are the eigenstates that result from
solving Eq. (2) for all possible values of E and relevant boundary conditions. Whether
one chooses to solve Eq. (1) or Eq. (2) for a particular p--H scattering problem depends
on the approximations and numerical methods chosen.

The approximations and numerical methods suitable for solving the Schroedinger
equation (Eq. (1) or (2)) for p--H scattering depend on the energy of the incident p-.
Described and compared in the following sections are three particular methods that are
valid in different portions of the energy range from zero to MeV energies.

3. Semiclassical Method for p - Energy Above 10 eV

When that energy of the p- is high, the dependence of the wave function Ψ or ψ on
the position of the p- is very strong, so a superposition of solutions in a narrow range of
energies around a mean value, Ε, makes the p- portion of the wave function very com-
pact. Thus, the p- can be represented, to a good approximation as a classical point par-
ticle. The p- is then taken to move on a classical trajectory, and Eq. (1) is solved for the H
atom only, under the time dependent influence of the p-. Thus, for the hydrogen atom,
one solves

-i ∂Ψ[r,t]/∂t = (- (1/2µe)∇r
2 - 1/r - 1/R[t] + 1/ρ[t] ) Ψ[r,t] , (6)



where ρ[t] = |R[t] -r|, with R and r being the vectors corresponding to R and r, and concur-
rently, one calculates R[t] (and thus R[t]) by calculating the classical trajectory of the p in
a potential energy field given by

V[t] = - 1/R + ∫ Ψ∗[r,t](1/ρ)Ψ[r,t] dτr . (7)

Eq. (6) and the classical trajectory are solved simultaneously by numerical methods in
increments of time. Eq. (6) may be solved directly or one may use Ψ = Σi ci[t]ψi, where
the ψi are a limited set of bound and unbound states of H, and then solve for the ci[t]. At
sufficiently high energies the p- may be simply presumed to move on a straight line with a
constant speed.

Fig. 1. Protonium formation and e - ionization cross sections in atomic units
for p --H scattering as functions of the kinetic energy in eV in the lab frame of
reference. a: Schultz et al. [1] using the semiclassical method and solving
the time dependent Schroedinger equation. b: Morgan and Hughes [4] and
Morgan [5] using the semiclassical method and the adiabatic approxima-
tion. c: Voronin and Carbonell [7,8] using a fully quantum mechanical
method to solve the time independent Schroedinger equation.

An example of results employing this semiclassical, time dependent approxima-
tion are shown in Fig. 1. as curves a. Experimental data on the ionization exists above
30 eV and the calculation agrees fairly well with them. These results were obtained by
Schultz et al. [1] by solving Eq. (6) on a 1353 3D cartesian spatial lattice with a constant
spacing of 0.385 atomic units. Spatial differencing was accomplished by either a low
order 3-point scheme or by using a high order Fourier collocation representation. Time
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propagation from time to to time t was handled by a unitary, implicit method involving
expansion of the exponential time propagator, exp[-iH[(t+to)/2](t-to)]. Various approxima-
tions in the numerical methods were employed. The numerical calculation was at the
limit of being doable, and appears to be prohibitive for energies below 10 eV. Equation
(7) was not solved directly. The p- was assumed to move on a trajectory determined from
the ground state adiabatic potential energy curve (see following section). This approxi-
mation appears to be valid at energies where the trajectory departs significantly from a
straight line with the p- moving at constant speed. This method is also valid for Ε> 1MeV.

Variations of the above method has been applied to other systems by a number of
authors including Ritchie [2]. It should be noted that, for these calculations, the numeri-
cal mesh employed is Cartesian with fixed spacing. It might be possible to use meshes
for other coordinate systems and/or other variable spacing to improve the efficiency of
the calculations.

4. Semiclassical Method for p - Energy Below 10 eV

For energies around and below 10 eV another approximation is valid. That is the
adiabatic approximation, which applies when the p- is moving so slowly that the time
dependent solution, Ψ, to Eq. (6) differs little (except for an insignificant multiplication fac-
tor, exp[iEt]) from the ground state solution, ψ, of the time independent equation,

 (- (1/2µe)∇r
2 -1/r - 1/R + 1/ρ ) ψ[r] = Eψ[r] , (8)

which is just the time independent Schroedinger equation for H in the presence of a sta-
tionary p-. Equation (8) has been considered and solved, using nearly analytic numeric
means, by a number of authors including those listed in Ref. [3]. In Eq. (8), R acts as a
parameter upon which ψ and E depend. The potential energy felt by the p- is E[R] - E[∞],
where E[∞] = -1/2 is the ground state energy of H (atomic units). The results of solving
equation (8) may be combined with the semiclassical approximation to considerably sim-
plify obtaining the cross section for protonium formation below 10 eV.

To employ this semiclassical, adiabatic method one proceeds as follows. First,
one notes that solving Eq. (8) shows that for R less than Rc = 0.639 a.u. (atomic units)
the electron becomes unbound. Thus, if the inner turning point of the p- orbit is less than
this value, the e- leaves, and to conserve energy the p- must become bound to the p and
protonium is formed (p- capture). Thus, one can determine the maximum value of impact
parameter (R1, distance of closest approach to the p if the p- were moving on a straight
path) which leads to the inner turning point being less than Rc. The cross section for pro-
tonium formation, σ, is then just given by

σ = πR1
2. (9)

Morgan and Hughes [4] employed this method to determine σ and those results
were later extended by Morgan [5] to somewhat higher energies. They are shown as
curve b in Fig. 1.  These are evidently the only results in this energy range.



Considerations concerning the accuracy and range of validity of the results are as
follows. First, the adiabatic approximation breaks down as the p- speeds up while
approaching the p. This breakdown is what allows the e- to escape and p- to become
bound, since otherwise the e- would return and the p- leave. There is nevertheless a
probability that this reversion to the original state may occur. Morgan has made of rough
estimate of this and found the probability of reversion to be nearly independent of energy
below about 2 eV and about equal to 20% [6].

Second, below about 2 eV and due to the effect of the R-4 dependence of the long
range potential energy between the p- and H, the inner turning point is a discontinuous
function of the impact parameter such that it is either well outside of Rc or well within it.
Thus, around and above 2 eV, the border between protonium forming or not is less well
defined, there is less time for it to occur, and calculation of the reversion probability is
suspect. Thus, the results for p- energies around and above 2 eV are probably less
accurate than for those below. Further, Eq. (9) does not account for the fact that around
and above 25 eV the cross section drops rapidly to zero because the electron cannot
take away the larger excess energy required for protonium formation. The upper end of
validity for Eq. (9) and curve b of Fig. 1 is probably, therefore, a few to 10 eV.

The lower end of the energy range of validity is determined by the point at which
assuming classical motion for the p- becomes invalid. This lower end may be at about
10-4 eV where the p- wave packet is about the same size as the H atom. However, as the
p- approaches the p, it speeds up considerably, attaining a kinetic energy well above that
value, and it becomes more compact. Thus, the semiclassical, adiabatic approximation
may be valid at still lower energies. It should be noted that it agrees at least roughly with
the other two curves in Fig. 1 near both of its limits.

Another possible problem with this method is that it makes no account of the dis-
crete energy states in which the protonium is formed (principal quantum numbers of
about 25 to 30). A more fully quantum mechanical method for this energy range could
take that into consideration. A colleague, Burke Ritchie, and I are currently searching for
such a method that is capable of numerical solution with available computational meth-
ods and computers.

5. Fully Quantum Method for p - Energy Below 10 -4 eV

For p- energies below 10-4 eV only a few p- angular momentum waves are
involved in the interaction, so it is possible to do fully quantum mechanical calculations.
A. Yu. Voronin and J. Carbonell have carried out a successful, and evidently the only,
such calculation [7,8].

They start by employing a unitary coupled-channel approach in which the time
independent ψ is expressed as an expansion,

 ψ[r,R] = φ[r] χ[R] + Σi gi[r] fi[R] , (10)



which is to be a solution of Eq. (2) and where φ is the ground state wave function of H, χ
is unknown, the gi are unknown (except they are orthogonal to φ), and the fi are the com-
plete set of wave functions (eigenstates) of protonium. In Eq. (10) r is defined as in Sec-
tion 2. above, while R is initially defined as the distance from the p- to the center of mass
of the p and e-. This alternative definition leads to the absence of the gradient product in
Eq. (4) and a slight change in the coefficient of ∇R

2 there, if the R there is replaced by
this alternative one.  As it stands, there are no approximations in Eq. (10).

Voronin and Carbonell then argue that it is a good approximation to replace their
initial R with the one of Section 2. while keeping the simplifying changes to the equations
there that their initial choice provided. Doing so leads to simplification of the boundary
conditions that were inherent in their initial choice.

Substitution of Eq. (10) into Eq. (2) and subsequent projection onto φ and each of
the fi then results in an infinite set of coupled 3-coordinate partial differential-integral
equations which, of course, cannot be solved numerically at present. Thus they proceed
through a number of approximations and substitutions to render the system tractable to
solution. First they truncate the expansion in Eq. (10) and approximate the effect of the
dropped terms by adding a long range potential energy term to the equation for χ. Next
they separate out the dependences of χ and the fi on the angles of r and R (temporarily
greatly multiplying the number of equations) while noting that, due in part to the low p-

energy, the fi need only include states of low angular momentum and a limited range of
principal quantum numbers. Thus, the equations are reduced to a set of coupled ordi-
nary differential-integral equations.

That set is still numerically difficult, but the full set need only be solved once, for
zero p- energy, because a number of terms can be grouped into a complex potential
energy that is nearly independent of the p- energy. The zero-energy solution provides an
evaluation of that potential energy, and when it is substituted in for other energies, the set
of equations reduces to a single one which can be readily solved numerically. Consider-
ing only protonium states with angular momentum quantum numbers of zero through
three, their results for the protonium formation cross section are shown as curve c in Fig.
1. (Inclusion of direct nuclear annihilation raises the cross section by about 30% at the
left end of the curve and by an imperceptible ammount at the right end.) Accurate values
for energies higher than shown require consideration of higher angular momentum val-
ues. Where they overlap with these results, the more approximate adiabatic, semiclassi-
cal results are too high by a factor of about two. This is encouraging for those results
since they are expected to be more accurate at higher energies.

5. Conclusion

At the present time, the p--H scattering problem has required a great amount of
effort to render it tractable to numerical solution. This is in considerable contrast to
bound state problems involving even larger numbers of particles, such as the energy
states of atoms, where tractable and accurate numerical methods (variational, Hartree-
Fock,....) have existed for many years.
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